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Integral Theory for the Instability of Laminar Compressible
Wakes behind Slender Bodies |

Dexny R. 8. Ko*
TRW Systems Group, Redondo Beach, Calif.

An integral theory is developed for studying the instability of laminar compressible wakes
behind slender bodies. The mean flow is assumed to be characterized by a few shape param-
eters and a Gaussian distribution. Distribution of the fluctuations aeross the wake is ob-
tained as a function of these mean flow parameters by solving the inviscid linearized fluctua-
tion equations using the local mean flow. The fluctuation field is coupled with the mean flow
through the Reynolds stress term, and the variation of the fluctuation amplitude is then ob-
tained, together with the mean flow parameters, by solving the integral conservation equa-
tions. Both axisymmetric and planar bodies are considered, and favorable comparison with
available two-dimensional experimental results is indicated.

I. Introduction

ECAUSE of the inherited dynamical instability associ-
ated with its mean profiles, a laminar wake at high
Reynolds number is generally unstable, and transition to a
turbulent wake commences under most circumstances. Most
of our present understanding of the transition from a laminar
to a turbulent wake has relied on experimental observations.
On the other hand, relatively meager analytical effort has not
been able to provide a deeper understanding of the transi-
tional process. The first clue for the breakdown of a laminar
wake was furnished by classical linear stability theory, which
showed that a laminar wake is unstable to a wide range of
infinitesimal disturbances. The existence of such a linearly
unstable region has also been well demonstrated in various
wake experiments, e.g., Sato and Kuriki’s experiment! for a
two-dimensional incompressible wake, Sato and Okada’s
experiment? for an axisymmetric incompressible wake, and
Behrens and Ko’s® experiments for a two-dimensional com-
pressible wake. However, the linearized theory is valid only
over a fairly limited region in a wake because of its inherent
small-amplitude approximation.

In an effort to extend the region of validity for the theo-
retical approach, Stuart* and Watson¢ formulated a non-
linear stability theory for an incompressible parallel flow.
Reasonable agreement has been obtained between their
theory and the experiment of Taylor? for the case of circular
Couette flow. An attempt to extend this theory to a two-
dimensional compressible wake was reported by Liu® The
approach is based on the hypothesis of a small linear amplifi-
cation rate, which results in a weak interaction between the
disturbance and the mean flowfield. Therefore, the deviation
of the mean flowfield from a laminar state can be considered
as small and represented by a power series in the amplitude
of the fluctuation. However, because of the unstable nature
of the wake, such a small deviation from the laminar state is
not realized much beyond the linearly unstable region in most
practical situations. Additional complication is caused by
the growth of the wake which further restricts the range of
validity of the parallel low approach. Ko? has suggested a
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cascade method of solution for a nearly parallel incompressible
wake flow by supplementing the theory of Stuart and Watson
with an integral approach. The use of an approximate
integral approach has relaxed the relatively strong limitation
of a small linear amplification rate required in the theory of
Stuart and Watson. The success of such an approach is
indicated in the first-order results of Ko et al.,!® where the
stability of a laminar incompressible wake behind a flat plate
was considered. Over-all agreement with the experiments
of Sato and Kuriki has demonstrated the adequacy of such a
model for describing the breakdown of a laminar incom-
pressible wake.

A large number of experiments for studying the transitional
processes in a compressible wake have been reported in re-
cent years. Close similarity in the transitional processes
between the compressible and incompressible wakes has been
observed (e.g., Behrens and Ko?). It is the objective of the
present investigation to apply a similar integral approach
to study the transition phenomenon in a compressible wake.
Both axisymmetric and two-dimensional wakes are con-
sidered in this study.

II. Formulation

2.1. General Assumptions

In order to simplify the analysis while still retaining the
essential features of the transition process, the following
assumptions are introduced: 1) constant wake edge condi-
tions, 2) constant momentum deficit in the wake, 3) high
Reynolds number flow, and 4) ideal gas and no chemical
reaction. The first two assumptions amount to a negligible
outer inviscid wake, which, in reality, limits the present
analysis to slender bodies with relatively sharp leading
edges. The high Reynolds number assumption is generally
valid for most flows of practical interest and permits a
boundary-layer approximation to the mean flow. If neces-
sary, most of these assumptions can be relaxed easily in the
analysis with no conceptual difficulty to allow for a more
complete description of the flow.

Each flow variable is decomposed into a mean steady com-
ponent and a fluctuating component, e.g.,

u = u)) + u'xi) ey
with
@) =0 2

where the angular bracket is used to represent a time average
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over a suitably chosen period, whereas boldface type indicates
a vector. The full Navier-Stokes equation for a viscous
compressible fluid can then be separated easily into a set for
the mean and a set for the fluctuating components.

2.2. Method of Approach

In the transition region, the fluctuating component is ex-
pected to have a finite amplitude, which precludes the usual
decoupled treatment of linear stability theory. Therefore,
the mean and the fluctuation fields will have to be considered
simultaneously. In principle, the complete set of partial
differential equations can be solved for given boundary and
initial conditions of any desired flow. However, the com-
plexity of the system makes such an approach impractical
within the present computational capability. Therefore,
an integral method of solution, which has been applied suc-
cessfully to the case of an incompressible flat plate wake,®
will be used for the present investigation. An approximate
solution is sought which satisfies the conservation equations
in integral form. The essence of an integral approach lies
in the proper representation of the complete flowfield by a
few parameters. The detail distributions are relatively
unimportant if the governing parameters have been carefully
chosen with the correct physical background. The basic
thinking of the approach is to devise a phenomenological
theory for the transitional region. In close analogy to the
much explored phenomenological approach to a turbulent
flow, the main concern here is the suitable form of the Rey-
nolds stress needed to provide the coupling between the mean
and the fluctuation. This information will be obtained in
the present approach with the help of the linearized fluctua-
tion equations. The general approach will be deseribed in
more detail in the following sections.

2.3. Integral Equations

Let (u,w,w) be the velocity field corresponding to the axi-
symmetric coordinate system (z,r,6). [Similarly, let (u,»)
correspond to the two-dimensional coordinate system (z,r).]
Since only the time-averaged equations will be presented in
this section, the angular bracket will be dropped from the non-
fluctuating quantities. All equations are presented in non-
dimensional form, using the edge quantities (e.g., Ue,pe,pe,
and T.) and a characteristic body dimension L.

The full equations are simplified by invoking the high
Reynolds number assumption to the mean flowfield. In the
case of an axisymmetric wake, it is further assumed that no
swirl is transmitted to the wake. Thus, (w) = 0, and the
mean azimuthal momentum equation can be ignored. To
further simplify the analysis, the triple correlation terms are
taken to be zero.t After some manipulation, the required
integral equations can be obtained in the following form
(where m = 0 for two-dimensional and m = 1 for axisym-
metric cases):

Mean Radial Momentum Integral Equation

1 @ d
3 PO = 11= o0 —m [ ot — @<
®

which gives the mean static pressure field.
Mean Axial Momentum Integral Equation

‘I;) l:p(uZ —w) 4+ p@w'? + (p'u'y2u — 1) + 0] 31 X

Co
rmdr = -

4)

t This is actually a consequence of the single frequency model
used for the fluctuation field.
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where Cp = (drag of the inner wake)/%p,U.2L™*+! and M,
denotes the edge Mach number.
Mean Thermal Energy Integral Equation

d ®
dx ,ﬁ) [ow(T — 1) + (p'u'y (T — 1) + p/T’) +
— 1 o
e T 2 (o
’ op’ 11’ a_p, m 5 w o ou
Z)E‘f‘m:r bﬂ>]7'd7‘_{ R. [ﬁ) ﬂ(a—r)
rmdr + fom (p"yrm dr] (5)

where ¢’ represents the viscous terms involving the fluctu-
ating components, and B, = U.L/v..
Mean Kinetic Energy Integral Equation

d e
w Jo [%” W@t = 1) + 3p'u)Eur — 1) + put) +
—_ 1 - a
(p’yﬂ[ Z)u} o dr = ﬁ [(p(u’v’) + v(p'u’)) a—::f +

o]
<p<u’2> -+ u{p’u’) + 2 ST 2) aZ] rm dr

1 @ ou\?
—R—J‘O #(g,> rmdr (6)
An additional integral equation to be used in the present
analysis is given by the kinetic energy equation for the
fluctuating component, which can be easily obtained from

the fluctuation equations.
Integrated Fluctuation Energy Equation

d e © 0
o fo puErm dr = —mvfo E 5 [rip’v’)] dr —
i Tas? a_u .a_/l{/ m —
.fo (pu)(v —{—uax>r dr
fi oo
(w’z):l rm dr — M 5 f < bp +

w' op’ 1 po
L dr——Refo @ dr (7

Flw'?y + @' + mw'].

oy

where £ =

2.4. Mean Flow Model

There is enough experimental evidence to suggest that the
mean flow quantities (velocity and density) have nearly
Gaussian distributions across the wake with proper normal-
ization. This is valid throughout the whole wake length
except in the immediate vicinity of the body. Therefore,
the mean axial velocity field is assumed to be characterized
by two parameters in the following form:

ulrx) = 1 — We(x)W*(n) ®)
where
7 = 1/b(x)

and where b is the velocity wake half-width and W, is the
centerline velocity defect, 1 — u(0,z). The constant ki
is set to be 0.693, which deﬁnes the characteristic width b
as the distance from the ‘axis to the half-velocity defect
point. A similar expression is used for the density field, i.e.,

p(rx) = 1 — p(x)D* ®

W* = exp(—kmm®)
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where

p. = 1 — p(0,2) (the centerline density defect)

and
D* = exp(—kam?)

The relative magnitude of k» to k; indicates the relative size
of the density (or temperature) wake to the velocity wake.
For simplicity, k. is taken to be a constant equal to 0.5 based
on a square-root dependence of the Prandtl number with
Pr = 0.72. The other mean flow quantities can be obtained
in terms of p,u, and the fluctuation field. For example, the
mean static pressure field can be obtained easily from Eq.
(3), which gives

_(:yﬂfe2)—l(p — 1) = p(y’2> —
D L
qu p((w'?) — Ww'?) , (10)

2.5. Fluctuation Modeling

It is clear from inspecting the integral equations that the
fluctuation field should also be characterized by a few param-
eters. The present approach seeks the simplest yet most
reasonable way of representing the fluctuation field with
the least number of additional parameters. A natural
source from which to obtain information concerning the
fluctuations is through their governing differential equations.
The approach used in Ref. 9 assumes the dominance of a
single frequency fluctuation at the initial stage. A rather
formal expansion solution in series of the amplitude is also
proposed to account for the nonlinear effects in a ‘“‘cascaded”

n =20 =20
7> T~ K.(8n)
r~e

manner. This type of spectrum for the fluctuation quite
appropriately resembles that of an incompressible wake. In
the case of a compressible wake, a much broader spectrum is
normally observed. Therefore, the single frequency repre-
sentation should not be taken literally but should be con-
sidered as a means of obtaining the functional dependence of
the Reynolds stresses on the flow parameters. Based on the
findings of the two-dimensional incompressible wake, the
higher-order effects will be neglected in the present calcula-
tions. Thus, the nonlinear terms in the fluctuation equation
will be ignored. Furthermore, the viscous and heat-con-
ducting terms are neglected based on the study of Lin,!!
which states that the inviseid solution is a close approxima-
tion to the exact solution in the case of an amplified dis-
turbance. In addition, the local parallel mean flow assump-
tion is used, i.e., () = (w) = 0 and no axial variation of the
mean quantities. Then, this set of linearized governing equa-
tions for the fluctuation field permits a wave-like solution of
the form

u' ~ ¢,(re® + conjugate
v’ ~ ig.(r)ei® 4+ conjugate
w’ ~m go(r)ei® + conjugate
p’ ~ s(r)ei® 4 conjugate
p' ~ w(r)e’® + conjugate
T' ~ ¢(r)e® -+ conjugate

with

(11)

O = ar — ot + mn

Notice that, in the case of axisymmetric wake, the fluctuation
field depends on the azimuthal angle 8, whereas the mean
flow is considered to be axially symmetric. Here, the spatial
mode of fluctuation is considered, i.e., the fluctuation grows
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or decays with distance. In other words, in Eq. (11), & =
nondimensional frequency (real), and @ = ar + 7 (non-
dimensional complex wave number), with (—«;) being pro-
portional to the local spatial rate of amplification. n is an
integer that will be taken as 1 in the present investigation
for axisymmetric case. This choice is based on the temporal
study of Lees and Gold,'? which shows that the n = 1 mode
(helical mode) provides a much higher amplification rate
than the other modes with n = 1. The antisymmetric mode,
u'(r = 0) = 0, is chosen for the two-dimensional case for a
similar reason.

The derivation of the governing equations and the proper
set of boundary conditions have been fully discussed by Lees
and Gold?? and Batchelor and Gill*® and will not be restated
here. For the purpose of numerical computations, it is more
convenient to work with a second-order equation for a single
variable, say . The governing equation for the pressure
fluctuation = is given by

AT dr/dn) | [t owmay ]
an [r»(W*—cV] [n'"ﬁ(W* T

=0 (12

where

¢ = W)L — (wb/a®)]
(13)
M= MW,

The other quantities can be easily deduced from n and its
derivatives. The corresponding boundary conditions for
Eq. (12) are

(for n = 0 in axisymmetric case)
(axisymmetric) (14)
(two-dimensional)

where K, represents modified Bessel function of the second
kind of the nth order and

B = xall — M| (14a)

The sign of the square root is chosen such that the real part
of 8 is positive. The disturbance is considered as super-
sonic, sonie, or subsonic, depending on whether the real part
of ¢ is greater than, equal to, or less than (1/M).

~ Equation (12), together with the homogeneous boundary
conditions (14), forms an eigenvalue problem. The solu-
tions can be obtained numerically using the linear eigen-
value search method of Mack.'* In general, the eigenvalue
and the eigenfunction have the following functional de-
pendence:

a*

a*(ﬂ[hpcywc;wb)

15)
(1738 e, 00, W ¢, 0b)

i

™

for given k; and k2. The integrals involving the fluctuating
components can then be determined as functions of M,,p., W,
and wb once and for all. To simplify the analysis, the edge
Mach number is taken to be a given constant, and the dis-
turbance is assumed to have a constant physical frequency
w. The proper frequency for certain flow conditions is
given by the most unstable one calculated from the local
mean flow near the origin of the wake, where the flow is
presumed to be laminar. One further approximation is then
introduced by neglecting the contributions from the fluctu-
ating quantities to the integrated axial momentum equation.
Then, the wake half-width b is related to the other two mear
flow parameters p. and W, algebraically. By doing so, the
funetional dependence appearing in Eq. (15) reduced to twc
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Fig. 1 Eigenvalues for axisymmetric compressible wake.

parameters, p, and W.. All of the integrals involving the
fluctuations can now be expressed as functions of these two
parameters. IHowever, since the linearized problem is
homogeneous, all integrals are determined up to a constant
multiplier, which is taken to be the turbulent energy in-
tensity and will be determined simultaneously with the mean
field. For example, the Reynolds stress integral can be
written as

[0 owvtyam dn = A% (o W) (16)

Some of the approximations used to arrive at expression
(16) may seem to be weak over the whole transitional region.
However, it should be emphasized that the linearized flue-
tuation equation is used merely as a tool to obtain the proper
correlation between the fluctuating quantities and the mean
flowfield which is needed in the integral formulation. These
correlations are obtained in advance with a limited number
of computations covering the ranges of interest. The same
information could, in principle, be obtained from a controlled
experiment (an alternate but more frequent way of achieving
a phenomenological theory). Since the detailed distribu-
tion is not of vital importance to an integral method of solu-
tion, the present approach is expected to be adequate for a
large portion of the transition region. However, there is no
provision in the theory to treat a fully developed turbulent
wake at the present time. In fact, because of the viscous
dissipation effect, the solution will eventually return to a
laminar one in the present calculation.

2.6. Initial-Value Problem

Using the proposed models for the mean and the fluctuating
fields, the complete problem has been reduced to solving for
the four unknown quantities: the velocity wake width b,
the wake velocity defect W,, the centerline density defect
pe, and the turbulent intensity A2 The solutions, as func-
tions of the axial distance behind the body, can be obtained
by simultaneous integration of the four integral conservation
equations for the momentum, the mean kinetic energy, the
mean thermal energy, and the fluctuation energy. The
mean momentum integral equation can be integrated readily
to provide an algebraic relation between the four unknowns.
The remaining integral equations can then be written in the

ATAA JOURNAL

following form:

aw, dpe dAz
Kiw dCL' + K’ld dx + Km dx = Kz (17)
with K, K:4,K:e, and K; being known functions of p.,W,,
and A% This set of first-order nonlinear differential equa-
tions can be solved numerically as an initial-value problem
by starting the integration near the wake neck with ap-
propriate initial values of W, p,, and A% The initial value
of W, represents essentially the drag of the inner wake.
The initial value of p. represents the temperature excess on
the wake centerline at the neck which gives the effect of body
cooling. The initial value of A? gives the turbulent intensity
level at the wake neck. The effects on the transitional proc-
ess of these initial values will have to be studied numerically.

111. Resulfs and Discussions

3.1. Axisymmetric Wake

To demonstrate the transition phenomenon in the wake
of an axisymmetric body, the following conditions have been
used as a test case:

edge Mach number, M, = 16.5

Reynolds number based on edge conditions, Bp = 1.76 X
108

drag coefficient of the inner wake, Cp = 0.03

Since the integral equations are solved as an initial-value
problem, the following conditions are chosen to be the repre-
sentative values at the wake neck, which is taken to be the
initial station in the present calculations:

initial centerline velocity defect W, = 0.3
initial centerline density defect p., = 0.9 (18)
initial fluctuation energy level Z, = 1078

Here Z, defined as

7 = fo‘” Eqm dn

represents the integrated fluctuation energy density, which
gives a measure of the turbulent intensity in the wake. This
initial intensity Z, corresponds to an initial velocity fluctua-
tion on the order of 1 fps.

3.1.1. Linear stability equations

The modeling for the fluctuation field requires a proper
choice of the characteristic frequency to be used for obtaining
the integrals. Since the initial amplitude of the fluctuation
is expected to be small, the linear stability theory is valid, at
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Fig. 2 Variation of the centerline velocity defect.
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least in the first portion of the wake transition region. Thus,
the characteristic frequency is selected from the solutions of
the linear stability equations corresponding to the initial
conditions at wake neck. Figure 1 gives the eigenvalues as
a function of the nondimensional frequency (nondimensional-
ized with the edge velocity U. and base diameter D). The
frequency with the maximum spatial amplification rate is
chosen to be the characteristic one. As indicated in Fig. 1,
a slightly different value may be chosen, depending on the
mean flowfield at the initial station. However, the choice
of the characteristic value over a fairly wide band of fre-
quencies with compatible local amplification rate is not ex-
pected to influence the over-all results to a large extent.
The characteristic frequency is chosen to be 1.5 for the
present calculation.

A nearly linear dependence of the wave number «, on the
frequency is also shown in Fig. 1. However, because of the
nonvanishing imaginary component «:, the wave speed C, is
not a constant. It may be noted that, at these conditions,
most of the amplified modes correspond to the so-called super-
sonic disturbance. Because of the past misconception on the
nonexistence of a supersonic disturbance, it should be em-
phasized that no particular distinction between a subsonic
and a supersonic disturbance is given in the present analysis.
In fact, as one follows a given frequency along the wake, the
disturbance changes smoothly from a supersonic to a subsonic
one. Thus, there is no sudden change in the integrals, which
are the main concern in an integral approach.

3.1.2. Transition phenomenon

Using the integrals obtained from solving the linear stability
equations, the integral equations (17) can be readily in-
tegrated numerically using the initial conditions (18). Figure
2 shows the calculated wake velocity defect as a function of
the streamwise distance behind the neck. Also shown on
the same plot is the velocity decay for a laminar steady wake
under the same conditions. The corresponding growth of
the wake is shown in Fig. 3. A fairly rapid increase of the
size of the wake is seen to accompany the transitional process.
The computed centerline density defect is presented in Fig.
4. All three mean flow variables present a similar trend,
which may be understood with the help of Fig. 5, where the
evolution of the fluctuation energy density Z is shown. For
xz/D < 200, the fluctuation intensity is not high enough to
affect the mean flow, and the calculated results follow the
laminar curve. Near x/D = 200, the defects deviate from
the laminar curve and decay at a much faster rate. Finally,
the decay rate slows down again, mainly because of the rapid
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expansion of the wake, limiting further growth of the fluctua-
tion.

It is appropriate to emphasize that the present model does
not provide a proper description of the turbulent wake.
Therefore, the solutions become increasingly inadequate for
increasing x/D. A generalized analysis, including a patched
region to a fully developed turbulent model in existence
today (e.g., Lees and Hromas?), is needed for a complete
description of the flowfield in a wake. However, for the
purpose of studying the transitional phenomenon, the present
model is believed to be quite adequate. Since we may
visualize the single-frequency representation as a first-order
effect in a series expansion solution in amplitude 4 for the
fluctuation field, the magnitude of A can be used as a rough
measure of the validity of the theoretical model. Based on
the criterion of A being less than certain magnitude (say 0.3),
the location where such a limit is exceeded in general occurs
some distance downstream of the peak of the fluctuation
energy density Z. Further studies and comparison with
experimental observations are needed before any definitive
statement can be made.

3.1.3. Reynolds number effects

Using the present theory, the effect of freestream Reynolds
number is studied by invoking the following assumptions:

1) Drag coefficient of the inner wake is mainly due to the
skin friction of the body and is proportional to REp~'/2.

2) The physical frequency of the characteristic fluctuation
mode varies with Reynolds number in such a way that a
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locally normalized frequency wb remains constant. From
Eqs. (15), this assumption implies that the same functional
dependence of the integrals on the mean flow parameters W,
and p. can be used for all Reynolds numbers, as long as the
other flow conditions remain unchanged.

3) The same initial conditions (18) are used for all calcula-
tions in order to single out the Reynolds number effects.
In reality, the flow conditions near the wake neck are func-
tions of the Reynolds number, a result to be revealed by
studies of the laminar near wake (e.g., Ohrenberger and
Baum?®),

The caleulated variations of the fluctuation intensity for
various Reynolds number are also shown in Fig. 5. Follow-
ing each Reynolds number, the fluctuation energy density
first grows exponentially as predicted by the linear stability
theory, but soon reaches a peak and then decays, caused
originally by the rapidly expanding wake and later by the
viscous dissipation. It may also be noted that the effective
local Reynolds number, defined by

Rlocal = RDbI/Vc (19)

is a decreasing function of the axial distance as opposed to
the two-dimensional case, where Rjo.: remains practically
constant. Therefore, a stronger viscous effect on the flow-
field should be expected for an axisymmetric wake.
Calculations covering a range of Reynolds numbers are
presented in Figs. 4-6. The effects of Reynolds number on
the fluctuation are clearly displayed in Fig. 5. Both the
rate of growth and the peak intensity of the fluctuation are
reduced as the Reynolds number decreases. The corre-
sponding effects on the centerline density defect p. and the
wake velocity W, are shown in Figs. 4 and 6. The abscissa
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Fig. 7 Effects of Reynolds number and Mach number on
the transition location.
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in these two plots have been normalized by the square root
of Reynolds number. In this coordinate, the laminar steady
solution is given by a single curve for all Reynolds numbers.

The mechanisms for the breakdown of a laminar wake
have been fully discussed in Ref. 10 for a two-dimensional
incompressible wake. The onset of transition oecurs when
the growing Reynolds stress term becomes comparable to
the laminar viseous term. This picture is believed to remain
intact with the introduction of compressibility. Since a lower
Reynolds number means a larger laminar viscous contribution
to the mean flow decay, therefore a larger amplitude must be
reached before the Reynolds stress term becomes important.
This effect, together with the lower rate of amplification for
the fluctuation, results in a delay of “transition’” as the
Reynolds number decreases. For the smallest Reynolds
number calculated (Bp = 5 X 10%), the fluctuation field
has not been able to influence the mean field in any noticeable
manner, and the flow is virtually laminar throughout.

So far, the term “transition’” has been used somewhat
looscly. 1In order to illustrate the dependence of the transi-
tion process on the edge Reynolds number in a more quanti-
tative way, two arbitrary definitions of transition location
are used, and the results are presented in Fig. 7. The broken
line corresponds to the location where the fluctuation energy
density Z = 2 X 10~* (arbitrarily defined for the purpose
of demonstrating a threshold in detectable signal), whereas
the solid line gives the intersection of the maximum slope
with the Jaminar steady solution on the W, vs /D plot. It
may be noted that the numerical results cannot be correlated
by a simple power law, such as z,/D ~ Rp~ 1. It is con-
ceivable that a collection of data over a limited range of
Reynolds number may lead to a specific power-law depen-
dence. The nonexistence of transition location above certain
altitude is also interesting to note.

3.1.4. Mach number effect

It is indicated in expression (15) that the eigenvalue and
the eigenfunction are functions of the edge Mach number.
Moreover, Mach number also appears explicitly in the in-
tegral conservation equations. Using the same initial condi-
tions, (18), the transition location defined by the maximum
slope intercept is also plotted for M, = 10 on Fig. 7. The
result confirms the stabilizing effect of increasing Mach
number.

Because of the lack of detailed measurements in the transi-
tion region of an axisymmetric, compressible wake, no ex-
perimental result has been compared with the present calcu-
lations. Therefore, more quantitative justification of the
approach will have to rely on rather idealized situations.
The rather favorable comparison with the experiment of
Sato and Kuriki has provided some justification of this gen-
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Fig. 8 Comparison of the centerline velocity defect for
two-dimensional compressible wake.
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eral approach. A test for the present compressibility model-
ing will have to come from the comparison with a two-
dimensional, compressible wake to be discussed in the next
section.

3.2. Two-Dimensional Compressible Wake

A large number of laboratory experiments for two-dimen-
sional compressible wakes have been reported, including some
detailed measurements in the transition region. For the
purpose of comparison, calculations are carried out for the
compressible wake behind a flat plate. The calculated re-
sults are then compared with the mean flow measurements
of Batt" and the fluctuation field measurements of Behrens
and Ko.? The specific flow conditions are

freestream Mach number, M, = 6

Reynolds number based on L, Bz = 9.3 X 104

averaged drag coefficient, Cp = 0.016

3.2.1. Linear stability equations

The linear stability theory has indicated that an antisym-
metric fluctuation is more unstable than a symmetric one
for two-dimensional flows. Thus, only antisymmetric two-
dimensional disturbances are considered. The experimen-
tally observed dominating frequency of 70 kHz, which corre-
sponds to a nondimensional frequency w = 13, is chosen to
be the characteristic mode.

3.2.2. Comparison between theory and experiment

The calculated velocity and density defects are compared
with the measurements of Batt in Figs. 8 and 9. Two sets
of solution eurves corresponding to two different initial levels
of turbulent intensity Z, are shown in each figure, together
with the laminar solution. A good agreement of the ve-
locity defect W. throughout the measured region is obtained
for Z, = 2 X 1074 However, a better agreement with the
experimentally determined density defect p. is seen for Z, =
1 X 10~% Since the solution curves are nearly translated
in the axial direction by changing the magnitude of Z,, the
choice of such a value needs some justifications. This
justification is partially given by the comparison of the calcu-
lated fluctuation energy with the measurements of Behrens
and Ko for the same model in Fig. 10. Since the experi-
mental hot-wire data were not reduced, a direct quantitative
comparison with the calculation was not possible. How-
ever, a sensible comparison can be made by normalizing the
data with the initial magnitude at station /L = 2. Figure
10 shows a reasonably good agreement for the calculation
obtained by setting Z, = 2 X 1074, especially in the peak
magnitude. A change of Z, by a factor of 2 causes a rela-
tively small change in the solution curves for W, and p., as
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Fig. 9 Comparison of the centerline density defect for
two-dimensional compressible wake.
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two-dimensional compressible wake.

indicated in Figs. 8 and 9. However, the change in Z is
much more dramatic. It should be noted that the solution
for Zy = 1 X 107*is plotted in half-scale in Fig. 10. These
results clearly indicate that the ratio of the peak turbulent
intensity to an initial reference station is the most sensitive
result with respect to the change in initial conditions and can
be used as an indicator for the correct initial values. It
should also be noted that Z, = 2 X 10~* corresponds to
1.59%, velocity fluctuation. The freestream turbulence level
in the GALCIT hypersonic wind tunnel where the test was
conducted has been determined to be between i and 1%.
Therefore, this level of initial fluctuation intensity at 2/L =
2 is quite acceptable when certain growth in magnitude be-
fore x/L = 2 is taken into account.

IV. Conclusion

The stability-oriented integral approach has been success-
fully applied to the study of the laminar-turbulent transition
of the axisymmetric as well as the two-dimensional wakes.
Favorable comparison with the experiments of Batt and
Behrens and Ko for a two-dimensional wake at Mo = 6
tends to substantiate the theoretical model. Any quantita-
tive comparison of the axisymmetric case was hampered by
the lack of detailed measurements in the transition region.
Some well controlled experiments in axisymmetric wake are
needed to give a better assessment of the theory.

The outer inviscid wake has been completely neglected
in the present analysis. Modifications to include the outer
inviseid wake should be incorporated into the present theory
in order to treat bodies of relatively blunted nose.

References

1 Sato, H. and Kuriki, K., “The Mechanism of Transition in
the Wake of a Thin Flat Plate Placed Parallel to a Uniform
Flow,” Journal of Fluid Mechanics, Vol. 2, 1961, pp. 321-352.

2 8ato, H. and Okada, O., “The Stability and Transition of
an Axisymmetric Wake,” Journal of Fluid Mechanics, Vol. 26,
Pt. 2, 1966, pp. 237-253.

3 Behrens, W. and Ko, D. R. 8., “Experimental Stability
Studies in Wakes of Two-Dimensicnal Slender Bodies at Hyper-
sonic Speeds,”’” AIAA4 Journal, Vol. 9, No. 5, May 1971, pp. 851~
857.

¢ Stuart, J. T., “On the Non-Linear Mechanics of Wave Dis-
turbances in Stable and Unstable Parallel Flows. Part 1. The
Basic Behavior in Plane Poiseuille Flow,” Journal of Fluid
Mechanics, Vol. 9, 1960, pp. 353-370.

s Watson, J., “On the Non-Linear Mechanics of Wave Dis-
turbances in Stable and Unstable Parallel Flows. Part 2. The
Development of a Solution for Plane Poiseuille Flow and for
Plane Couette Flow,” Journal of Fluid Mechanics, Vol. 9, 1960,
pp. 371-389.



1784

8 Watson, J., “On Spatially-Growing Finite Disturbances in
Plane Poiseuille Flow,” Journal of Fluid Mechanics, Vol. 14, 1962,
pp. 211-221.

7 Taylor, G. 1., “Stability of a Viscous Liquid Contained
Between Two Rotating Cylinders,” Philosophical Transactions
of the Royal Sociely, Vol. A223, 1923, pp. 289-343.

8 Liu, J. T. C., “A General Theory of the Development of
Finite-Amplitude Disturbances in the Unstable Laminar Wake
Behind Plane Bodies at Hypersonic Speeds,” AIAA Paper
68-684, Los Angeles, Calif., 1968.

9 Ko, D. R. S., “Non-Linear Stability Theory for a Laminar,
Incompressible Wake,” Part II, Ph.D. thesis, 1969, California
Inst. of Technology.

1 Ko, D. R. 8., Kubota, T., and Lees, L., “Finite Disturbance
Effect on the Stability of a Laminar Incompressible Wake Be-
hind a Flat Plate,” Journal of Fluid Mechanics, Vol. 40, Pt. 2,
1970, pp. 315-341.

it Lin, C. C., “On Uniformly Valid Asymptotic Solutions of
the Orr-Sommerfeld Equation,” Proceedings of the 9th Inter-
national Congress of Applied Mechanics, 1957, pp. 136-148.

D. R. 8. KO

ATAA JOURNAL

12 Lees, L. and Gold, H., “Stability of Laminar Boundary
Layers and Wakes at Hypersonic Speeds. Part I. Stability
of Laminar Wakes,” Proceedings of International Symposium. of
Fundamental Phenomena in Hypersonic Flow, Cornell University
Press, Ithaca, N.Y., 1966.

s Batchelor, G. K. and Gill, A. E., “Analysis of the Stability
of Axisymmetric Jets,” Journal of Fluid Mechanics, Vol. 14,
1962, pp. 529-551.

14 Mack, L. M., “Computation of the Stability of the Laminar
Boundary Layer,” Methods in Computational Physics, Vol. 4,
Academic Press, New York, 1965, pp. 247-299.

15 Lees, L. and Hromas, L. A., “Turbulent Diffusion in the
Wake of a Blunt-Nosed Body at Hypersonic Speeds,” Journal
of the Aerospace Sciences, Vol. 29, No. 8, Aug. 1962.

16 Ohrenberger, J. T. and Baum, E., “A Theoretical Model
of the Near Wake of a Slender Body in Supersonic Flow,’’
ATAA Paper 70-792, Los Angeles, Calif., 1970.

7 Batt, R. G., “Experimental Investigation of Wakes Behind
Two-Dimensional Slender Bodies at M 6,” Ph.D. thesis,
1967, California Inst. of Technology.

SEPTEMBER 1971

AJAA JOURNAL

VOL. 9, NO. 9

Aerodynamics of Slender Bodies and
Wing-Body Combinations at M, = 1

Joun R. SPrREITER*
Stanford Unwversity, Stanford, Calif.

AND

STEPHEN S. STAHARA T
Nielsen Engineering & Research Inc., Mountain View, Calif.

An account is given of recent theoretical results for steady inviscid transonic flows around a

variety of three-dimensional bodies of aerodynamic interest.

The local linearization method

for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure
distributions for freestream Mach number one on the surface and in the near flowfield of a
number of slender, pointed, axisymmetric and nonaxisymmetric bodies, including simple

wing-body combinations, for both nonlifting and lifting conditions.

Comparisons with ex-

periment exhibit good agreement, except near the rear of some of the bodies, particularly

those with maximum thickness far forward or on lifting bodies at larger angles of attack.

It

is suggested that the former is due primarily to wind-tunnel wall interference, and the latter
to boundary-layer separation and vortex generation.

I

HE purpose of this paper is to describe a theoretical pro-

cedure for determining the pressure distributions at free-
stream Mach number M., equal unity on the surface and in
the near flowfield of slender bodies and wing-body combina-
tions, both nonlifting and lifting, and to demonstrate the
quality of the results by comparison with experiment. The
analysis is based -on the small disturbance theory of inviscid
transonic flow, and makes use of the approximations of
slender-body theory, the transonic equivalence rule, and the
method of local linearization for axisymmetric flow with M.
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1. Results are presented for bodies of revolution having
maximum diameter located between 309, and 70% of the
body length, for parabolic-arc bodies of elliptic cross section,
and for both & conical and a more general wing-body com-
bination. Angles of attack a range from 0° to 6°. The ex-
amples were selected, insofar as possible, to enable comparison
with existing data obtained either in a conventional transonic
wind tunnel with partly open walls or in a solid-wall wind
tunnel operating in the choked condition to simulate flow
with M., = 1.

II. Theory

Basic Equations

The analysis is expressed primarily in terms of a body-fixed
Cartesian coordinate system centered at the nose with the x
axis directed rearward and aligned with the longitudinal axis
of the body, the y axis directed to the right, facing forward,
and the z axis directed vertically upward, as illustrated in
Fig. 1. The freestream direction may be inclined any small



